Review of SERS Substrates for Chemical Sensing

نویسنده

  • Pamela A. Mosier-Boss
چکیده

The SERS effect was initially discovered in the 1970s. Early research focused on understanding the phenomenon and increasing enhancement to achieve single molecule detection. From the mid-1980s to early 1990s, research started to move away from obtaining a fundamental understanding of the phenomenon to the exploration of analytical applications. At the same time, significant developments occurred in the field of photonics that led to the advent of inexpensive, robust, compact, field-deployable Raman systems. The 1990s also saw rapid development in nanoscience. This convergence of technologies (photonics and nanoscience) has led to accelerated development of SERS substrates to detect a wide range of chemical and biological analytes. It would be a monumental task to discuss all the different kinds of SERS substrates that have been explored. Likewise, it would be impossible to discuss the use of SERS for both chemical and biological detection. Instead, a review of the most common metallic (Ag, Cu, and Au) SERS substrates for chemical detection only is discussed, as well as SERS substrates that are commercially available. Other issues with SERS for chemical detection have been selectivity, reversibility, and reusability of the substrates. How these issues have been addressed is also discussed in this review.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface-Enhanced Raman Spectroscopy for Biomedical Applications: A Review

Surface-enhanced Raman scattering has recently become a powerful vibrational spectroscopic tool for numerous applications in physical, chemical, biological as well as medical science. Apart from a chemical enhancement process, plasmonic fields sustained by metal nanoparticles play a vital role in the surface enhancement phenomena. Thus most SERS based applications also involve metal nanostructu...

متن کامل

Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime.

We report a novel approach for fabricating gold nanostar-functionalized substrates for highly sensitive surface enhanced Raman spectroscopy (SERS)-based chemical sensing. Gold nanostars immobilized on a gold substrate via a Raman silent organic tether serve as the SERS substrate, and facilitate the chemical sensing of analytes that can either be chemisorbed or physisorbed on the nanostars. Our ...

متن کامل

Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.

Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper review...

متن کامل

Targeting Biological Sensing with Commercial SERS Substrates

There is an increasing need and challenge for early rapid and accurate detection, identification, and quantification of chemical, biological, and energetic hazards in many fields of interest (e.g., medical, environmental, industrial, and defense applications). Increasingly to meet these challenges, researchers are turning interdisciplinary approaches combining spectroscopy with nanoscale platfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017